If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+13=29
We move all terms to the left:
n^2+13-(29)=0
We add all the numbers together, and all the variables
n^2-16=0
a = 1; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·1·(-16)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8}{2*1}=\frac{-8}{2} =-4 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8}{2*1}=\frac{8}{2} =4 $
| 20=5x+15 | | 14=v/3-4 | | 6x3x=32 | | -51=3(n-4) | | 2w+4(w-4)=-10 | | −15=2x−3 | | 5(x+2)+3x=-6 | | 7r+5r+2r+13r-11r=16 | | x-11-3x=-42 | | 8(u-5)-3u=10 | | 13=w/8+4 | | 6=6/5x | | Y=x^2+9/x^2-7 | | 6-4x=1+9x | | 8x-(7x-1)=17 | | 12h-6h=18 | | 8-9w=44 | | 6p-2p=20 | | 16x16x=1 | | 3x-4x+2=3(2x-4) | | 16=24+2c | | r=74+0.125/0.25 | | 14(r−52)=18 | | 13=7p+6p | | (6d+5)−(2−3d)=(6d+5)−(2−3d) | | .25(r-2.5)=18 | | 0=-4v-8v | | 7w+w=16 | | 4x-5×(x-1)=2x+4 | | 4(4x−7)−4=4(x−4)+68 | | 45=16y-7y | | 3x+11=-7+5x-3x |